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fluxes for each material, respectively. This probably indicates that smoke
production is dominated by flame exposure of the melted urethane collected in

the trough. However, greater smoke production was evident as the heat flux

level was increased for nonpiloted exposure. Smoke production in general was

low as compared with the other 13 materials over the range of heat fluxes tested.
This may be attributed to the material being shielded from radiant heat exposure
when it melted into the trough on the sample holder. Rapid melting is always
observed of foams when they are tested in the NBS smoke chamber. These foams
would pass the limits under some test conditions and fail, usually marginally,

at others. However, the low smoking characteristic is primarily the result of
rapid melting of the foam away from the high radiant heat exposure area. A

more appropriate method of testing polyurethane foams, or other materials which
melt, would be to use a horizontal sample holder to contain the material within
the radiant heat exposure area. Breden and Meisters (reference‘6) have demon-
strated that Dy for thermoplastics in a horizontal test orientation can increase
by a factor of approximately 3 to 8, depending on the material, over the vertical
orientation results.

PANELS. Five materials were designated panels; Nos. 224, 225, 227, and 233 were
of the typical honeycomb construction, while No. 234 was a molded polyester
fiberglass. A bar graph (figure 8) shows the behavior of these panels in rela-
tion to a limit of Dg < 100 at 90 seconds and Dg < 200 at 4 minutes. The low-
est smoke producing panel of the five tested was material No. 227, which also
was by far the thinnest composite panel tested. This panel exhibited except-
ionally low smoke levels for both piloted and nonpiloted exposure at all heat
flux levels tested. Smoke levels at all test conditions for this panel were
well within the considered limits. The remaining panels only passed the smoke
limits for 2.2 Btu/ft? s for both piloted and nonpiloted exposure. (Panel

No. 224 only passed the limits for 2.2-—Btu/ft2 s nonpiloted exposure tests.)

At higher heat flux levels, these panels would readily fail the smoke perfor-

mance limits.

Smoke history plots for the panels are found in appendix B (see figures B-17
through B-26). Smoke production increased monotonically with incident heat
flux for both piloted and nonpiloted exposure. Most panels tested produce
similar results at 7.5 and 10.0 Btu/ft2 s. Panel No. 234 is a §ood example of
a material displaying very low smoking tendencies at 2.2 Btu/ft< s but signifi-
cantly greater amounts of smoke at 5.0, 7.5 and 10.0 Btu/ft2 s. The necessity
for evaluating materials at higher heat flux levels is again demonstrated by
this and other panels. All panels remained intact and did not burn-through for
the heat flux levels tested. Panels with a polyvinyl fluoride coating (PVF)
lost this decorative finish in the first 30 seconds of testing. This resulted
in a sharp rise in smoke production and then slower smoke production for the
remainder of the test. The smoke was believed to be primarily due to the invol-
vement of the resin used in the fiberglass facing and honeycomb core components
of the panels. The thickness or weight of the panel also appears to have a
bearing on smoke production. Material No. 227 was the thinnest and lightest
honeycomb panel tested and also produced the least amount of smoke. Material
No. 233 was of medium thickness and weight and was the next lowest smoking
panel. Materials Nos. 224 and 225 were thicker and heavier than material

No. 233 and produced greater amounts of smoke. '
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INTRODUCTION

PURPOSE.

The purpose of this project was to extend the heat flux range and test capa-
bilities of the standard National Bureau of Standards (NBS) smoke chamber in
order to better simulate cabin fire environments. Another objective was to
evaluate the smoke emission characteristics of a series of aircraft interior
materials over a wide range of heat flux conditions simulating those typical
of a cabin fire environment.

BACKGROUND.

The smoke from burning materials presents a severe obstacle to survival. 1In
the case of a survivable aircraft crash with a resulting cabin fire, smoke
can prevent rapid passenger egress by visual obscuration of emergency exit
signs and doors.

Although full-scale tests can characterize environmental conditions of a sim-
ulated cabin fire, small-scale tests are needed to provide uniform laboratory
conditions for routine material characterization. The standard NBS smoke
chamber is widely used in government and industry to evaluate smoking ten-
dencies of materials at a fixed radiant heat flux of 2.2 British thermal units
per square foot second (Btu/ft2 s) (2.5 watts per square centimeter (W/sz))
(references 1 and 2). The chamber consists of an 18-cubic-foot (ft3) enclosed
box, a vertical specimen holder, a radiant heater, a propane-air burner, and

a photometric system using an incandescent lamp and phototube receiver. Mod~
ifications were made to cause more severe material combustion over a range

of realistic heat flux levels and provide more data on material behavior. 1In
order to obtain these goals, the modifications made to the chamber consisted
of adding a variable radiant heat flux furnace capable of reaching 10 Btu/ft? s
(11.4 w/cmz), a laser transmissometer as an alternate means of measuring smoke
density, and a load cell for continuous weight loss measurement of the test
material,

TEST MATERIALS.

Fifteen interior materials were selected for testing in the modified NBS

smoke chamber. These materials were chosen from the following five usage cat-
egories: fabrics (4), flooring (2), foams (2), panels (5), and plastics (2).
A more detailed description of these test materials is found in appendix A.

Fourteen of the test materials, which were obtained from airframe and seat
manufacturers, are used in the three types of wide-bodied jets; the remaining
material, polysulfone (No. 220), is under consideration for aircraft usage.
These materials were prepared for testing in accordance with -the NBS smoke
chamber standard procedure (reference 1).



DISCUSSION

NBS CHAMBER MODIFICATIONS.

The modifications to the standard NBS smoke chamber were guided by published
results of similar smoke measurements in the last 5 years (references 3 and 4).
In order to complete the chamber modification, the following items were in-
stalled: '

Mellen furnace

Heat flux transducers (2)

Load cell

Laser photometer
Volt—pac@>variable transformer

The special Mellen model 10 furnace, capable of reaching 10 Btu/ft2 s (11.4
w/cmz), was connected to a General Electric (G.E.) model 9T92Y37 variable
transformer and was bench tested. The furnace was allowed to "bake-in'" accord-
ing to manufacturer specifications and was then mounted on a slider mechanism
fabricated from l-inch steel angle, 3/8-inch-diameter stainless steel rods

(2), and machined aluminum blocks (2) containing Teflon® bushings (two each)
(figure 1).

The slider mechanism for the furnace was necessitated by the use of a load

cell, Transducer Inc. model BCL-PP462-CS-1-C1l0P1l, under the specimen holder
which remains stationary over the test duration. This differs from the stand-
ard chamber in which the furnace is rigidly mounted, and the specimen holder is
slid along two rails. Using a slider mechanism enables the operator to move
the furnace back and forth from a shielded calibrating position (figure 2)

to a testing position (figure 3). Movement is accomplished with an external
hydraulic lever actuator-receiver system (figure 4). A pulley system (figure 5)
operates a shield which prevents any preheating of the test specimen while

the furnace is in the calibrate position.

The furnace was attached to two aluminum blocks, each containing two teflon
bushings through which the stainless steel rods were placed. The rods, in turn,
were secured to the steel angle frame providing a track for the forward and
back motion. The entire assembly was fastened to the chamber floor, placing

the Mellen furnace in the same test position as the original heater supplied
with the chamber., The load cell was mounted beneath the chamber floor to

shield it from the harsh environment within the chamber. A support rod, which
was fabricated and attached to the load cell, protruded up through the chamber
floor and contained a mount for the specimen holder (figure 1). This mechanism
enabled the operator to easily place and remove each sample being tested.

A radiometer (Hy-cal Engineering model 8015) was mounted on the back wall of
the chamber for calibrating the radiant heat output of the furnace (figure 1).
A second radiometer was used to periodically check the accuracy of the installed



For the 15 materials tested, smoke production usually increased with increas-

ing heat flux, provided the sample did not ignite. This was true for both
piloted and nonpiloted conditions. When ignition of the material occurred,

smoke production would decrease for most materials, as observed during individual
tests. Material numbexs (Nos.) 210, 226, 230, and 235 were exceptions to this
behavior. These materials, which were four of the six highest smokers (display-
ing a specific optical demsity (Dg) of greater than 600), exhibited even higher
smoke emissions when ignition of the sample occurred. The decrease in smoke
production when ignition occurred in the other 11 materials tested is probably
due to more complete material combustion.

The following is an analysis of the smoke history data contained in appendix B
on the basis of grouping the materials into five usage categories.

FABRICS. A smoke limit once considered for fabrics was Dg < 100 at 4 minutes
for a 2.2 Btu/ft2 s exposure (reference 5). A bar graph (figure 7) shows the
behavior of the four fabrics tested in relation to this criteria. Treated
nylon (No. 209), in piloted tests, passed this criteria for all heat flux levels
tested. Nonpiloted tests of No. 209 only passed the criteria for 2.2 Btu/ft? s.
Material No. 209 was the lowest smoker per unit sample weight in this usage
category. Except for the 10—Btu/ft2 s nonpiloted test condition, 100-percent
wool (No. 212) nonpiloted tests passed the limit for fabrics. The only piloted
test of No. 212 that passed the limit was at 7.5 Btu/ftZ s. Material No. 204,
which is wool/nylon 90/10 percent, passed the assumed limit for fabrics only

at 2.2-Btu/ft? s nonpiloted and 10-Btu/ft2 s piloted conditions. This is an
interesting result because a piloted test of No. 204 produced more smoke than

a nonpiloted test at 2.2 Btu/ft2 s; whereas, the nonpiloted test of No. 204 at
10.0 Btu/ft2 s produced significantly more smoke than the piloted test. This
clearly shows the importance of varying the heat flux and exposure mode while
observing the smoking characteristics of this and other materials. Material

No. 210, Naugafoam, produced significantly more amounts of smoke than the other
three fabrics at all heat flux levels. For No. 210, the 7.5 Btu/ft? s and

10 Btu/ft2 s piloted and nonpiloted tests produced a maximum specific optical
density (Dp) of greater than 650 in less than 90 seconds.

FLOORING. Only two flooring materials were tested: a vinyl/ABS laminate,

No. 230, and a wool carpet, No. 226 (see figures B-9 through B-12). For both
materials, there was a significant change in smoke production between 2.2 and
5.0 Btu/ft2 s with nonpiloted exposures. Except for nonpiloted exposure of
No. 226, there was very little difference noted in smoke production between
5.0, 7.5, and 10.0 Btu/ft2 s. Wool carpet generally smokes less than vinyl
flooring when exposed to varying heat flux levels; but of the materials tested,
flooring as a group produced the most smoke: The specific optical density
1imits for materials other than fabrics were 100 at 90 seconds and 200 at 4
minutes (reference 5). Both materials only passed this limit at 2.2-Btu/ft2 s
nonpiloted exposure, which is the mildest test condition.

FOAMS. Only two polyurethane foam materials were tested: No. 213 (figures B-13
and B-14) and No. 215 (figures B-15 and B-16). Material No. 215 displayed
slightly lower levels of smoke production than material No. 213. Piloted expo-
sure tests showed very similar smoking characteristics over a range of heat



PLASTICS. Two types of plastic sheets were tested, No. 220, polysulfone,
(figures B-27 and B-28), and No. 235, polycarbonate (figures B-29 and B-30).
Both materials exhibited very low smoking characteristics at 2.2 Btu/ft2 s for
piloted and nonpiloted exposure. However, a significant increase in smoke
production was observed as the heat flux level was increased. The polysulfone
sample actually grew out of the holder and extended toward the furnace, pro-
ducing a dense, black, sooty smoke at the higher heat fluxes. It then formed

a crusty char in the shape of a bubble in the sample holder. Polycarbonate,

in contrast, formed stringy drips which extended to the floor, while also pro-
ducing vast amounts of black, sooty smoke at the higher heat fluxes. For these
two plastics, smoke increased monotonically with increasing incident heat flux.
More than any of the other materials tested, the plastics exhibited the most
dramatic increases in smoke production over that at 2.2 Btu/ft2 s, again showing
the necessity for varying the heat flux exposure in materials testing.

SPECIFIC OPTICAL DENSITY COMPARISON. TFour plots were constructed of Dg (piloted)
versus Dg (nonpiloted) at 4 minutes for the heat flux levels tested (figure 9).
Those levels where the smoke level peaked or saturated the photometer

(Dg=800) before 4 minutes are not included in this comparison. The 45° line is
a perfect correlation line for Dg-nonpiloted ignition versus DS—Eiloted ignition.
It is clear from these plots that the piloted test at 2.2 Btu/ft“ s is a more
severe test than a nonpiloted test at the same heat flux. For all 15 materials,
the smoke level is greater for piloted exposure than for nonpiloted. However,

as the heat flux level is increased, the nonpiloted smoke levels tend to exceed
the piloted values, making the nonpiloted mode a more severe test condition.

At 10 Btu/ft? s for most materials, a nonpiloted test is clearly more severe
than a piloted test. Thus, for flame resistant aircraft cabin materials, the
presence of a pilot flame ignition source caused more smoke at lower heat

fluxes and less smoke at higher heat fluxes.

SPECIFIC OPTICAL DENSITY RANKING. The smoke history plots in appendix B were
used for additional analysis of the data. Tables 1 and 2 of maximum specific
optical density (Dp) were very easily constructed from the data in appendix B.

The tables give some indication of the smoking characteristics of cabin materials,
in general, as heat flux is increased. For example, the data in table 1 for
nonpiloted exposure exhibit some interesting trends. At 2.2 Btu/ft2 s, Dp

for 11 of 15 materials was less than 100, and 13 of these materials had not
achieved peak smoke production at the end of the test (7 minutes). In comparison,
there was only one material at each higher heat flux level with Dj less than

100. Also, at the 3 higher heat flux levels, the values of Dy are particularly
distributed throughout the range of measurements. As the heat flux level was
increased, the time of occurence of Dp tended to decrease. At 10 Btu/ ft2 S,

13 of the materials achieved peak smoke production in less than 4 minutes.

Similar trends can be gleaned from table 2 for piloted exposure.

Dg at 90 seconds and 4 minutes for nonpiloted and piloted tests, respectively,
was used in arranging tables 3 and 4. These specific optical densities were
arranged in increasing order, with the lowest Dg being the best material and
the highest Dg being the worst material. It is evident from these tables that
a material such as No. 210 polyvinyl chloride (PVC) (a coated cotton fabric)
is rated very low when compared with the other materials tested.



A material such as No. 235 (a polycarbonate plastic) looks favorable when
compared with other materials at 2.2 Btu/ftZ s. However, its data becomes in-
creasingly worse with increasing heat flux until it was among the lowest rated
materials tested at the 10.0 Btu/ftZ s level. However, the opposite is also
true with a material such as No. 204 (a wool/nylon blended fabric) which tends
to look more favorable with increasing heat flux for piloted exposure.

WEIGHT LOSS ANALYSIS. Instantaneous weight loss data were taken continuously
for each test material. Weight loss in grams was calculated for each material
at 30, 60, and 90 seconds and is presented in table 5. Based on 90-second data,
in 86 percent of the tests more material is lost for piloted exposure than for
nonpiloted, although in only 59 percent of the tests was more smoke produced
for the piloted exposure. One material was chosen from each of the five usage
categories for which time history plots of specific optical density and weight
loss were constructed (figures 10 through 19). Reasonably good correlation

was noted for some materials between Dg and weight loss at some heat flux
levels, especially for nonpiloted exposure. There appears to be a time lag
between any noticeable weight loss and an indication of increasing Dg.. This is
probably due to the separation of the sample holder from the photometric sys~
tem within the chamber. An interesting trend for some materials (e.g., vinyl/
ABS No. 230) is that Dg is approximately 100 times the weight loss in grams.
Apparently, for this material the fraction of weight loss converted into smoke
is fairly constant and independent of exposure conditions. However, this be—
havior does not exist for most materials, especially for piloted exposure tests.
Based on residual weight measurements, fabrics and foams appeared to be entirely
consumed at higher heat fluxes; whereas, flooring, panels, and plastics only
experienced a maximum of 50-~percent weight loss for the 10-minute test dura-
tion.

SUMMARY OF RESULTS

1. For most of the 15 materials tested, smoke production increased with in-~
creasing heat flux provided the sample did not ignite. This was true for both
piloted and nonpiloted conditions. When ignition of the material occurred,
smoke production would decrease, as observed during individual tests. Material
Nos. 210, 226, 230, and 235 were exceptions to this behavior.

2. Polycarbonate and polysulfone sheets exhibited the most significant dif-
ferences in smoke production between 2.2 Btu/ftz's (the "standard" exposure
condition) and higher heat fluxes. These materials produce very low smoke in
both piloted and nonpiloted exposure tests at 2.2 Btu/ftZ2 s, but at 7.5 and
10.0 Btu/ft? s they emitted as much smoke as the smokiest materials tested.

3. Wool carpet and vinyl/ABS flooring produced considerably more smoke at heat
flux levels above the standard 2.2-Btu/ft2 s value.



4. The smoke production of foams and fabrics did not change appreciably over
the range of heat fluxes tested.

5. A vertically-oriented laser transmissometer often produced very low light
transmittance data because of soot particles deposited on the bottom window
that blocked the narrow laser beam. The standard photometric system has a much
wider light beam and an electrical heater for reducing deposition which greatly
diminishes the susceptibility to this problem.

6. Some materials exhibited a correspondence between the Dg and weight loss
histories (e.g., vinyl/ABS flooring); however, this similarity was not evident
for most materials, especially under piloted exposure conditions.

7. For the composite panels, smoke production increased monotonically with
incident heat flux for both piloted and nonpiloted exposure. The thinnest of
these panels had low smoke emissions at all test conditions.

CONCLUSIONS

1. The modified NBS smoke chamber, as equipped with a new variable radiant
heater is a valuable test protocol for measuring smoke density of an aircraft
cabin material for a range of heat flux levels.

2. The magnitude of radiant heat flux and the type of ignition have a major
influence on the smoke emission characteristics of aircraft interior materials.

3. The standard 2.2—Btu/ft2 s heat flux is insufficient for evaluating the
smoke characteristics of cabin materials in a postcrash cabin fire situation

where a higher and wider range of heat flux levels exist.
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FIGURE 1. SLIDER MECHANISM FOR MELLEN FURNACE (INSIDE VIEW)

MELLEN FURNAC l“

FIGURE 2, MELLEN FURNACE IN CALIBRATE POSITION
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FIGURE 3. MELLEN FURNACE IN TEST POSITION

FIGURE 4. SLIDER MECHANISM (OUTSIDE VIEW)
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FIGURE 5. SHIELD--PULLEY SYSTEM

FIGURE 6. LASER PHOTOCELL ON TOP OF SMOKE CHAMBER
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